Introduction to Ecological Forestry Glenn Ahrens – OSU Extension Forester, Clackamas, Marion & Hood River Co. Rolf Gersonde – Seattle Public Utilities

Extension Service

Extension Forestry & Natural Resources

Educational Assistance

Finding answers and solving problems by learning together.

- Help you learn what you need to know to decide what is right for you
- Take action DIY or hired services.
- Improvement Prevention Problem-solving
- Depending on your situation and your objectives.

Elements of Ecological Forestry

- mimic natural forest processes
- maintain or increase ecological and financial capital
- native species diversity and forest structural diversity
- maintain or improve the soil
- enhance habitat and biodiversity.
- economic and ecological resilience
- diversified financial value variety of merchantable timber products and non-timber forest products.

Ecological Forestry 101 Outline

- Ecology of Douglas-fir forests natural forest development & forest stand dynamics
- Even-aged vs. uneven-aged forest management
- Ecological Forestry managing for "continuous forest cover"
- Operational considerations in active management.
- Getting the help you need

Ecology of Douglas-fir - Fire is the major disturbance driver

Natural Fire Regimes of Major Forest Types

Forest Type	(frequency %) Fire Type	Fire Interval (years)
Oregon white oak	(3%) Stand replacement	275
woodland	(19%) Mixed severity	50
	(78%) Low surface fire	12
Douglas-fir (Willamette	(18%) Stand replacement	150
Valley foothills)	(29%) Mixed severity	90
	(53%) Low surface fire	50
Douglas-fir/western	(25%) Stand replacement	300
hemlock, dry	(75%) Mixed severity	100
Douglas-fir/western	(71%) Stand replacement	400
hemlock, wet	(29%) Mixed severity	>1,000

http://www.fs.fed.us/database/feis/fire_regime_table/PNVG_fire_regime_table.html#PacificNorthwest

Top 12 Trees in W. Oregon	(by wood volume)
Source: USFS Forest Inventory and	d Analysis data 2000's
Douglas-fir	61.4%
Western hemlock	11.4%
Red alder	8.3%
Bigleaf maple	3.4%
Sitka spruce	2.7%
Grand fir	2.4%
Pacific madrone	1.8%
Oregon white oak	1.7%
Western redcedar	1.7%
Incense cedar	0.8%
White fir	0.6%
Ponderosa pine	0.5%

Forest Stand Dynamics - after disturbance

Stand development stages, disturbance dynamics, habitat

Chad Oliver 1981, Franklin and Van Pelt 2004

Resources required are proportional to tree size

Many Small = One Large

1: Seedling Stage

2: Crown Closure Stage

3. Crown Differentiation Stage

CD

S

CD

S

CD

D = dominant CD = co-dominant I = intermediate S = suppressed

4. Self-thinning Stage

Difference in size due to crown differentiation – All these Douglas-fir are 37-38 years old

Competitive vs. Agent Mortality

- Understory Establishment Stage

- Seed Source
 - Species, seed year, predation
- Environment
 - Temp, water, light
- Seed bed
 - Soil, competition, mycorrhiza

Shade tolerance – Ranking of western tree species (Daniel et al. 1979)

<u>Very tolerant</u>	Western hemlock Pacific yew	
		Pacific silver fir
		Vine maple
<u>Tolerant</u>	Western redcedar	
	Grand fir	
		Sitka spruce
	Big-leaf maple	
Intermediate	Douglas-fir	
		Western white pine
	Ponderosa pine	
<u>Intolerant</u>	Lodgepole pine	
		Red alder
<u>Very intolerant</u>	Cottonwoods	
	Larch	

Mixed-species Forests

Red Alder: A state of knowledge, p. 45 http://www.fs.fed.us/pnw/publications/pnw_gtr669/

Maximum stand density varies by species

Species	Biological Max. Trees per acre at 10-inch dbh	Trees per acre at mortality threshold 10-inch dbh
Alder	450	246
Douglas-fir	595	329
W. hemlock	850	463

Based on Stand Density Index for each species

Even-aged vs. Uneven-aged Management

Even-aged "age-class" System

Uneven-aged Management System

Even-aged Management common practice with Douglas-fir and many other species

Ecological Basis for Uneven-aged Management Many Types Worldwide

- "Inverse J" Diameter distribution of natural stands driven by small-scale disturbance

Uneven-aged Management - Long History & much debate among foresters

- Alfred Möller, 1922 "Dauerwald" in Germany
- Kirkland and Brandstrom, 1930's USFS
- Continuous Forest Cover, Natural Forestry, Close-to Nature Silviculture

References:

Controversy over clearcutting

http://www.foresthistory.org/ASPNET/Policy/Forest_Management/Clearcutting/timeline.aspx

Selective cutting in Douglas-fir: History Revisited

http://www.fs.fed.us/pnw/olympia/silv/publications/opt/418_Curtis1998b.pdf

POWERED BY ORANGE

Managing Multi-aged Stands

Growing Space Allocation – Trees versus Stands

Growing Space Allocation

80% Growing Space In Overstory

20% Growing Space In Understory

Managing Uneven-aged Stands

Manage stand density to:

- 1. Sustain growth of all stand components
- 2. Maintain stand structure
- 3. Replace tree mortality and harvest with regeneration

Transformation from even-aged to uneven-aged?

Stand Volume and Rotation in Even-aged System

Stand Age

Cutting Cycle

- cutting cycle length depends on cutting intensity and growth rates

Cutting Cycle Length

Removed Timber Volume

Stand Volume - Density

Growth

Rate
Group Selection System

Group Selection System

- Area Control Method of Uneven-aged Management

Activities:

Group-Selection Harvest

Natural Regeneration Planting

Pre-comm. Thinning

Commercial Thinning

Understory Thinning

Single Tree Selection

Single Tree Selection – developing a guide curve from tree count and diameter

Tree Tally by 2 inch Diameter Class

Single Tree Selection

Guide Curve:

At each cutting cycle we thin trees in classes that exceed the guide curve.

Stands at Uniform Density – often close canopy rapidly after thinning

Example: Age 30 200 TPA thinned to 100 TPA grew back to closed canopy within 10 years

With uniform spacing / thinning: dominant trees often close crowns rapidly, little room for intermediate trees or understory layers.

Patchy, variable density spacing / thinning can increase canopy diversity more and for a longer time.

Photos from: http://www.fs.fed.us/pnw/olympia/silv/selected-studies/variable/index.shtml

Hopkins Demonstration Forest www.demonstrationforest.org

RGB

Variable Density Thinning in Even-aged Naturally Regenerated Second Growth

Uneven-aged Management in Naturally Regenerated Second Growth

Uneven-aged Management Forest Products – Marketing Product Diversity

Assessing growth and control density of all tree sizes and species in the same stand

Assessment of Growth – Overstory diameter increment

105 years – thinned 4 times

Assessment of Tree Growth, Vigor, and Stability

- Crown ratio
- Height-diameter ratio

Tree Vigor and Stability

Height : Diameter Ratio (H and D in same units)

Assessment of Growth – Understory trees

Growth of terminal shoot versus lateral branches -

Douglas-fir

Large Gap >30% Light Small Gap ~20% Light Under Canopy >20% L

Understory Growth – Morphological Plasticity

rn hemlock

Noble fir

Pacific silver fir

•Sun and shade foliage

•Terminal vs. lateral growth

•Apical dominance

Tools For Assessment – Diameter Distribution

Tree Diameter Tally Sheet				
DBH Class	Plot 1	Plot 2	Plot 3	Sum
(Inches)	Count	Count	Count	Tree Count
0-4	0	0	0	0
4-8	2	1	1	4
8-12	4	1	3	8
12-16	6	2	2	10
16-20	2	2	8	12
20-24		6	2	8
24-28		1	5	6
28-32	4			4
32-36	1	1		2

Tools For Assessment – Diameter Distribution of Even-aged Stand

Growing Space Distribution Diameter Distribution of Multi-aged Stand

Permanent Sample Plots

- Species composition
- Size classes
- Stand volume
- Diameter growth
- Height growth
- Mortality
- Harvest

Permanent Sample Plots – Diameter distribution and increment

Inventory Period 1: Diameter distribution

Inventory Period 2: Diameter distribution Diameter class transitior

Thinning and Harvest

Objectives

Stocking Control, Regeneration, and Timber

□ Timing

Recovered previous harvest, market conditions

Make a plan

Long-term plan as Guide not Rule

Creating habitat

CWD, snags, canopy layers

Tree Selection and Marking

- Creating growing space
 Selection guide
- Basal area
- Diameter distribution

Harvest Layout

Units and boundaries

Uneven-aged stands are more variable
 Forest Practices

Roads and trails
 Long-term planning and reuse
 Collaboration

Planning - Group Selection System

Activities:

Group-Selection Harvest

Natural Regeneration Planting

Pre-comm. Thinning

Commercial Thinning

Understory Thinning

thinned
Implementation

Harvest Impacts

Summary – managing stand dynamics

- In the absence of disturbance (management) forest stands grow increasingly dense until they reach "carrying capacity" or "self-thinning" density.
- Unchecked competition results in "winners" and "losers" – within species and between species.
- Use assessment tools, judge growing space by looking at crown vigor, crown ratio, and height/diameter ratio.
- For successful management of mixed species and mixed age - give every tree enough growing space/distance from neighbors.

Summary – managing stand dynamics

- With uniform spacing and uniform thinning
 - dominant and co-dominant trees often close crowns rapidly
 - there is little room for intermediate trees or understory layers
- Patchy, variable density thinning can increase canopy diversity more and for a longer time.

Challenges with selective harvesting or partial cutting

- Need to avoid high-grading = removing the best trees and leaving damaged, diseased, genetically "inferior" stock.
- Need to avoid soil compaction, damage to roots, damage to stems and crowns of trees you want to leave for the future.
- Understory shrubs and herbs take over and inhibit understory trees.
- Understory trees are too numerous (too dense) and need to be thinned.
- Requires time, money, care, and dedication.

Keep learning and get the help you need

- You are part of an active and supportive forestry community learn from each other.
- Field tours, workshops, classes abound
- Use assistance available from many agencies OSU Extension, Soil & Water Conservation Districts, NRCS, NNRG, Oregon Department of Forestry, etc.
- Get good professional help when you need it consultants, contractors.

Alternative Forest Management OSU Extension Publications

- Group Selection Cutting in Mature Douglas-fir Forests -EM 9106
- Two-Aged Stand Management in the Coast Range EM 9082
- Individual Tree Selection (ITS) in a Northeast Oregon Mixed Conifer Forest - EM 9083
- Mixed Conifer and Hardwood Forest Management in Southwest Oregon - EM 9084

https://catalog.extension.oregonstate.edu/series2