

# Maintaining and enhancing wildlife habitat



*"If we work to support the diverse web of life in the forest it works to support us."* 

**Peter Hayes** 



Lori Hennings, Senior Natural Resource Scientist Metro Parks & Nature Department Lori.hennings@oregonmetro.gov 503-797-1940

Metro | Making a great place

### **Ecological underpinnings**





### **Conservation Biology**

- Strive for large habitat patches
- Avoid fragmentation
- Protect/restore streams, wetlands (behold the busy beaver!)
- Provide wildlife corridors look outside your property



### What is biodiversity?

- The variety of living organisms:
  - $\circ$  In your forest
  - Between forest stands
  - Throughout surrounding landscape
- Diverse natural systems are:
  - $\circ$  More stable, able to recover from disturbance
  - $\circ$  Resilient to climate change
  - More functional for us (pollination, insect control, clean air and water)

### Some species need big spaces

Ο

- Black-headed grosbeak
- o Brown creeper
- Cassin's vireo
- Hairy woodpecker
- Pacific-slope flycatcher
- Pileated woodpecker
- Steller's jay
- Swainson's thrush
- Pacific (winter) wren
- Yellow-breasted chat

- White- & red-breasted nuthatch
- Ermine (short-tailed weasel)
- Northern flying squirrel
- Douglas squirrel
- Western gray squirrel
- Townsend's chipmunk
- o Elk
- Cougar, bobcat
- o Bear
- Fisher, marten



### Variety is the spice of life

- High structural diversity = more species
- Different aged forests = more species
- Different tree densities = more species
- Changes over space, time = more species
- Many species require >1 habitat type



Diversifying Forest Structure to Promote Wildlife Biodiversity in Western Washington Forests

WASHINGTON STATE UNIVERSITY EXTENSION • EM044



https://pubs.wsu.edu/ItemDetail.aspx?ProductID=15459

### Forest age: Wildlife and seral stages



## Wildlife in young forests

- Characteristics
  - Follows disturbance
  - Grasses, herbs, shrubs, young trees
- Typical wildlife
  - Lots of birds (bluebirds, flycatchers, warblers, goldfinches, hummers, kestrel)
  - o Elk, deer, bear
- Important features
  - $\,\circ\,$  Snags and dead wood; legacy trees
  - Fruit-bearing shrubs



### Early seral hardwoods

OSU study: veg structure x birds

 Hardwood s esp. important in early seral
 Threshold effect in 10-13 YO stands
 Bird abundance went up w/hardwood tree cover, peaked at 10%





### Shrubs for dispersal/fall migration

Opening size: 2+ acres (5 acres better) Focus on fruit – helps store fat

- Elderberry
- Twinberry
- Huckleberry
- Native raspberry, blackberry
- Thimbleberry
- Western serviceberry
- Cascara







### Wildlife in middle-aged forests

- Characteristics
  - Dominant trees emerge
  - $\,\circ\,$  Canopy open enough for shrubs, herbs
- Typical wildlife
  - Nuthatches, swifts, tanagers, flycatchers, kinglets
  - Frogs and salamanders
  - $\,\circ\,$  Bats, flying squirrel, red-backed voles, deer

#### • Important features

- Different aged trees; mixed shrub understory
- Fallen logs/snags



### **OSU shrub study – bugs in forests**

- Best shrubs for Wilson's warbler food
  - $\,\circ\,$  Broad-leafed deciduous shrubs
  - $\circ$  Bracken fern
- Other bird species often used
  - Ocean spray caterpillars!
  - Salmonberry
  - $\circ$  Salal
  - $\circ$  Vine maple
  - $\circ$  OR grape
  - Huckleberry
  - Sword fern





### **Good hardwood trees** *to maximize wildlife benefits*

- Bigleaf maple\*
- Dogwood
- Madrone
- Oregon white oak
- Willows
- Native cherry
- Pacific crabapple



### Wildlife in older forests

#### Characteristics

- Large trees, complex canopy
- $\,\circ\,$  Great understory, lots of logs & snags

### • Typical wildlife

- $\,\circ\,$  Large contingent of amphibians
- Many flycatchers, warblers, owls, murrelets, woodpeckers, species needing snags/dead wood
- Bats, bear, carnivores

#### Important features

• Snags/dead wood, many decay stages; organic soils

### Snags and dead wood



### Wildlife and dead wood

- 93 wildlife species in PNW rely on snags
- 71 species rely on downed wood
- Conifers & hardwood valuable
- Conifers last longer

• Critical habitat components





### **Snags – OR forest practices rules**

- For harvest units >25 acres:
  - > 2 standing live trees or snags each > 30' tall, 11" diameter
  - $\circ \geq$  2 logs on ground per acre at least 10 cubic ft







Inches DBH with bark

Larger-diameter, taller snags stand longer and provide more cavities. Hairy woodpecker Photo: Dick Daniels/Creative Commons

















### Ways to tell a future snag

- Sap runs
- Splits in trunk
- Dead main limbs
- Fungi on bark
- Woodpecker holes





### **Increasing snags**

- Leave high, unmerchantable stumps
- Create snags





### Trees to create snags

- Hazard trees (forked top, weak wood, disease...)
- Shade tree where you want sun
- In group where you want to thin
- In areas with no snags



Courtesy WDFW



### How to create snags

- Larger snags + conifers last longer
- Try for minimum 12" diameter 15 ft tall; bigger is better
- But even tall stumps help

- 1. Remove top 1/3 of tree, ½ remaining side branches
- Leave top intact, remove ¾ side branches (good for Doug fir, hemlock pine)
- 3. Girdle the trunk\*



### Increasing dead wood

- Leave some burn piles in clear cuts
- Brush piles for wildlife
  - $\,\circ\,$  Largest pieces as foundation
  - $\,\circ\,$  Pile large branches loosely on top
- Cover for weasels, marten, voles, brush rabbits, reptiles
- Think connectivity





### Faking it

Affix nest boxes to gnarly trees Clean every year or two





#### Plywood, rock piles, brush piles





# Forestry practices to enhance biodiversity



### **Enhancing biodiversity: recap**

- Mix it up variable density thinning, skips, gaps
- Promote tree species diversity (incl. shade-tolerant)
- Promote age diversity; keep some big trees
- Keep some hardwoods
- Increase plants with fruits, nuts
- Underplant to enhance structure
- Protect riparian areas
- Retain and enhance dead wood
- Fake it



### **Reptiles**

- Really rely on cover
- Cool spots when it's hot: rocks, brush
- Warm spots for basking
- Clearings in south-facing slopes



### Western pond & painted turtles Do you have turtles in your pond?

- In trouble
- Some things are easy to fix
- Basking logs!









### **Oak release**

- Oak reduced to ~10% of original in Willamette Valley
- Very specific plant, wildlife associates
- Fire suppression, harvest, **overtopping by Doug fir**
- Oak Prairie Work Group





### Herbicides x wildlife? Jury's out

- Substantially reduces shrub, herb cover
- OSU study, white-crowned sparrows
  - No difference in nest success from no herbicide -> heaviest application
  - But ground nester
- OSU study, moth abundance

   Key food resource for many songbirds
   Strongly influenced by plant diversity
   Some herbicide effects

### Case study: Hayes' ecological monitoring



## Why monitor?

- Improve implementation
- Increase likelihood of successful outcomes
- Build credibility
- Communicate lessons learned



# Does monitoring need to be data heavy?





Consistent

Sufficient quality

Easy to collect

Suitable for analysis



Breeding bird window: May 15-June 30

Try to limit activities





### Lessons learned

- Shifted silvicultural focus from finer to coarser scale; larger mgt. units, larger patches
- Reduce ground disturbance to minimize weeds
- Success requires long-term strategies







### Case study: Chehalem Ridge Natural Area

Purchased in 2008 Site conservation plan develop 2013

# What we have-lack of biodiverstiy at multiple scales







Diversity of tree species and size, Snags: variable sizes and decay Vertical and horizontal heterogeneity Move towards old growth

Shrubs and herbaceous layers Down wood: various sizes

#### Chehalem Ridge thinning plan





### Snags and downed wood creation

4-8 snags/acre, 4-10 down wood pieces or wildlife piles/acre, distributed across project site
Will require multiple entries
Breaking even



© 2015 Google



### Creating log piles





# Are the dead wood features being used?

First year: no evidence of use Second year: 60% foraging evidence Third year: 93% foraging evidence



# "Leave" log and planted shrubs



### Oak release



### **Additional resources**



### Wildlife damage

- Deer, elk, beaver, mountain beaver (a.k.a. aplodontia, boomer), nutria
- Repellants, tubing, exclusion
- Beaver: cage trees near streams, wetlands
- Mt. beaver: http://wdfw.wa.gov/living/mtn\_beavers.html
- See APHIS website



### **Oregon Forest Resources Inst. publications**

- http://oregonforests.org/sites/default/files/publications/pdf/Wildlife \_Mngd\_Habitat.pdf
- http://oregonforests.org/sites/default/files/publications/pdf/OFRI%2 Omanaged%20forests%20elk%20deer\_for\_web.pdf
- http://oregonforests.org/sites/default/files/publications/pdf/OFRI\_ WIMF\_Songbirds\_web.pdf
- http://oregonforests.org/sites/default/files/publications/pdf/wildlife \_mngd\_amphibians.pdf
- http://oregonforests.org/sites/default/files/publications/pdf/Wildlife \_Mngd\_Fish.pdf
- http://oregonforests.org/sites/default/files/publications/pdf/WIMF\_ data\_Booklet\_v2.pdf
- http://oregonforests.org/sites/default/files/publications/pdf/EMFTW O\_establishing.pdf



### **Other interesting publications**

- https://www.allaboutbirds.org/guide/search
- http://oregonforests.org/content/wildlife-variety
- http://wdfw.wa.gov/living/snags/
- http://www.onrc.washington.edu/Publications/2012/ZobristHinckley ForestBiodiversity12R.pdf (diversifying forest structure)
- http://www.oregonturtles.com/native\_turtle
- https://www.oregon.gov/ODF/Documents/WorkingForests/CohoHab itatBrochure.pdf
- https://www.aphis.usda.gov/aphis/ourfocus/wildlifedamage/sa\_repo rts/ct\_prevention+and+control+of+wildlife+damage%2C+2015
- http://www.fs.fed.us/pnw/sciencef/scifi112.pdf skips and gaps

# Take home:

# Keep the diversity you have, create opportunities for more.

### Thank you!



Metro | Making a great place