
CHARCOAL'S ROLE in SOIL RESILIENCY

Charcoal stores the carbon that plants absorb in a stable form that lasts in soils for up to 10,000 years, keeping it from the atmosphere and providing benefits in our soils for millennia

PLANT GERMINATION

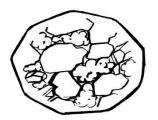
Charcoal's black color warms soils in early spring

NUTRIENT RETENTION

Each micropore holds an electrical charge that bonds with soil nutrients to keep minerals in the topsoil layers

WATER RETENTION

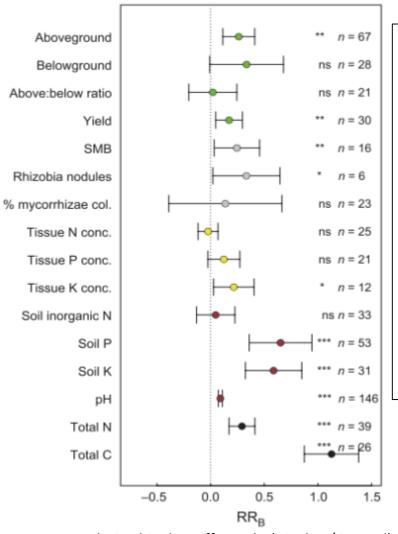
Charcoal's absorptive structure provides increasing stability in soil moisture

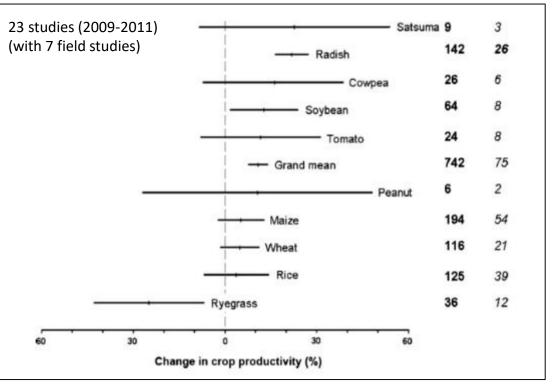

ORGANIC MATTER

Charcoal's micropores absorb organic matter

SOIL BIOLOGY

Charcoal has been shown to increase soil microbes that process minerals, resulting in plants absorbing higher amounts of nutrients




OXYGENATION

Micropores increase soil oxygenation, beneficial for saturated growing areas

Biochar Meta-Anlysis Studies:

Jeffery et al., 2011 Agriculture, Ecosystems & Environment

Biederman *et al.*, 2013 *GCB Bioenergy*

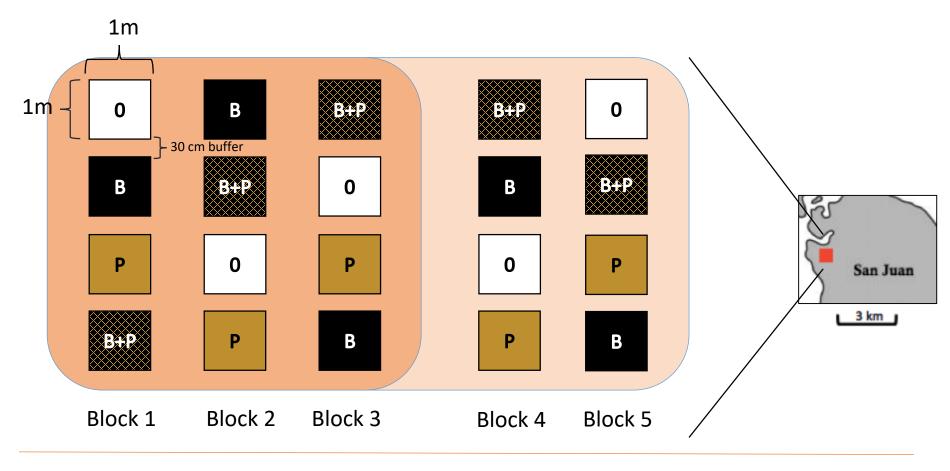
RR_B = relative biochar effect = In (Biochar/Control) 371 Independent studies

Key Meta-Analysis Papers

- An analysis done by Dr. Humin Zhou et al. in 2017 found that biochar increased Microbial Biomass Carbon an average of 26% from 413 academic research papers.
- Dr. Xiaoyu Liu and a series of other researchers <u>published a paper</u> examining 238 studies of biochar's influence on plant productivity. They found that vegetables increased by an average of 28.6%, and that legume crops, such as peas, beans, and vetch, increased productivity by an average of 30.3%.

Biochar Studies: Soil nutrient retentions

Biochar	Type of Study	Soils Characteristics	Observations	Citations
Corn stalks, 350 °C	Lab	Loam with low SOC level (0.79%)	29% decrease in NO ₃ - leaching	(Kanthle et al. 2016)
Sewage sludge, 300 °€	Lab	Clay loam (Ultisol)	6.8%, 8.5%, 7.9% decrease in NH_4^+ , $PO_4^{3^-}$, K^+ leaching, respectively; 0.2% increase in NO_3^- leaching	(Yuan et al. 2016)
Sewage sludge, 500 °€	Lab	Clay loam (Ultisol)	19.4%, 6.4%, 12.9%, 12.1% decrease in NH ₄ +, NO ₃ -, PO ₄ 3-, K+ leaching, respectively	(Yuan et al. 2016)
Sewage sludge, 700 °C	Lab	Clay loam (Ultisol)	35.9%, 9.7%, 23.7%, 23.4% decrease in NH ₄ +, NO ₃ -, PO ₄ 3-, K+ leaching, respectively	(Yuan et al. 2016)
Filtercake biochar, 575 °C	Lab	Sandy clay loam	No biochar effect on NO₃ leaching	(Eykelbosh et al. 2015)
Acacia whole-tree greenwaste biochar, 550 °C	Field	Loamy sand	No significant effect on NO ₃ -, K ⁺ leaching, but significantly increased the concentration (34%) and flux (103%) of PO ₄ ³⁻ leaching	(Hardie et al. 2015)
Giant reed <u>biochar</u> , 300-600 <u>°C</u>	Lab	Silt loam	2.9-11.4% and 7.0-15.4% decrease in NH $_4$ ⁺ -N, and NO $_3$ ⁻ -N leaching, respectively	Zheng et al., 2015
Pig manure biochar and wood biochar, 600 °C	Lab	Sandy loam	24-26% decrease of NO_3^- leaching, no biochar effect on NH_4^+ leaching	(Troy et al. 2014)
Commercially produced from mixed feedstock of fruit trees, ~500 °C	Field	<u>Silty</u> clay loam	72% decrease in NO ₃ - leaching, no effect on NH ₄ + leaching	(Ventura et al. 2013)


Gao & DeLuca, 2016

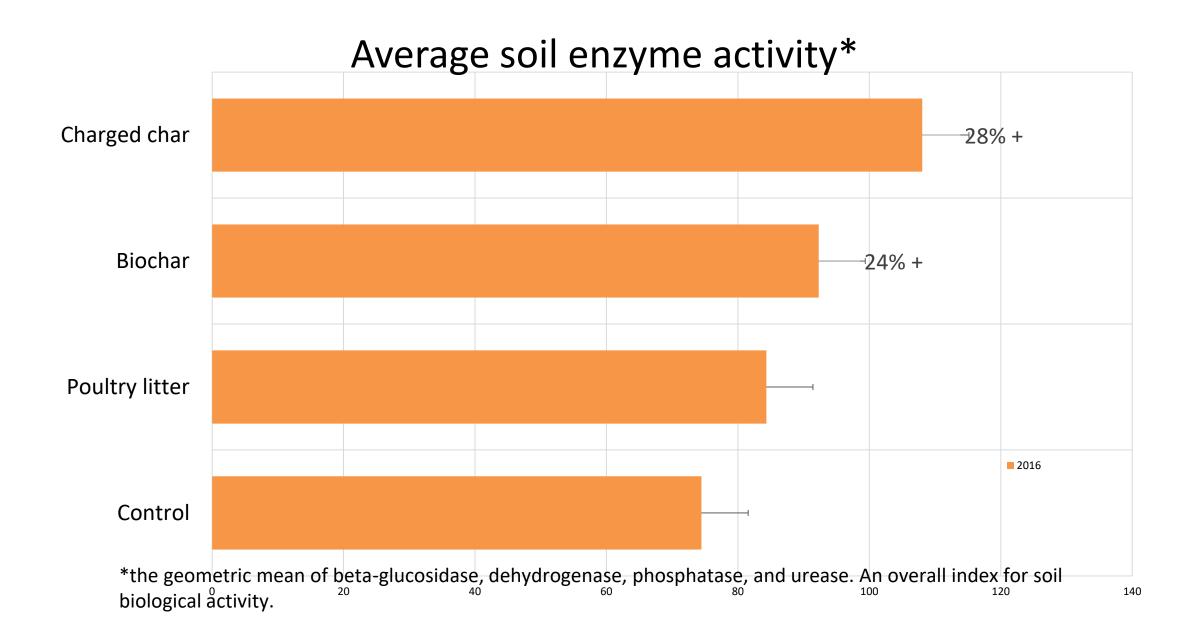
Advances in Plants & Agriculture Research

Key Considerations with Current Research

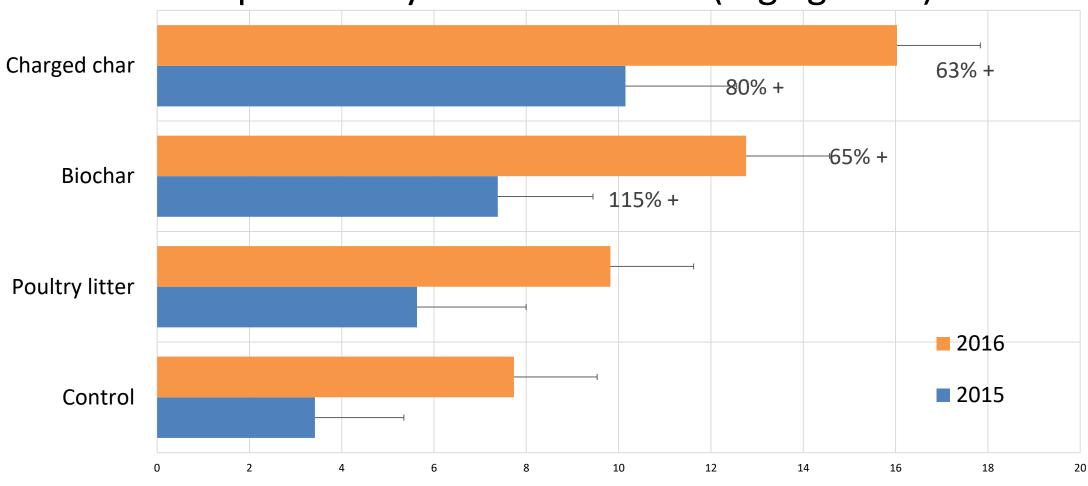
- The application of biochar to soils has also been shown to influence nutrient retentions.
- Short-term studies, pot and column trials in lab or greenhouse environment, very few are field studies.
- Also longer term field trials are in ag experiment stations using conventional farming approaches. Very few studies are conducted in the field in active organic farming systems and as a part of a holistic closed loop system.

Field Trials Design @ Each Farm

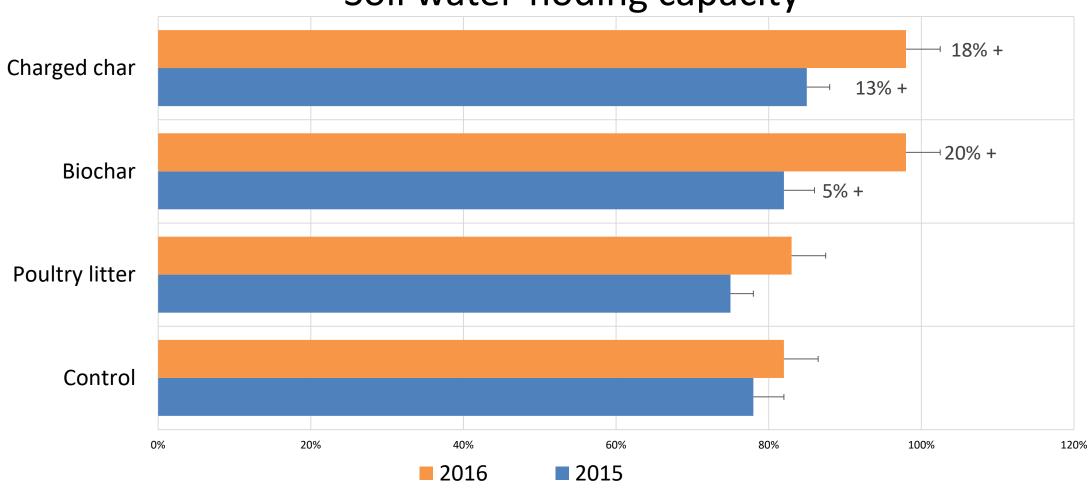
B Biochar (20 t ha⁻¹)


Poultry litter (70 kg N ha⁻¹ poultry litter)

Biochar charged with poultry litter (20 t ha⁻¹ + 70 kg N ha⁻¹)

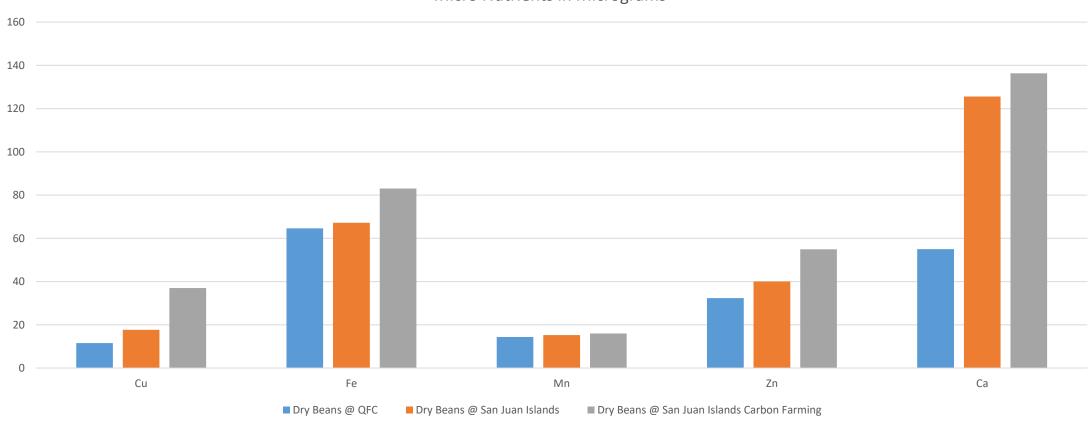


Soil microbial biomass C (mg kg⁻¹) Charged char 47% + 7% + ⁻46% + Biochar 20% + Poultry litter 2016 2015 Control 150 50 100 200 250 300 350


Soil total C (g kg⁻¹) 35% + Charged char [⊣]40% + 35% + Biochar [→] 45% + Poultry litter **2016** Control **2015** 10 20 30 40 50 60 70

Soil potentially mineralizable N (mg kg⁻¹ 14d)

Soil soluble inorganic P* (mg kg⁻¹) Charged char 160% + Biochar ⁻35% + Poultry litter **2016** ■ 2015 Control *exist in soll solution, readily available.1.5 2.5 2.0 3.0 3.5 4.0 4.5 5.0 Soil water-hoding capacity


Accumulated NH_4^+ -N below rooting zone (µg per resin capsule)

Average yield per treatment plot (kg) Charged char **-13%**+ Biochar 28%+ Poultry litter **2016** Control 7 2 5 8

Nutrient Density in Dry Beans 2015

Micro Nutrients in Micrograms

