Using Management to Increase Carbon Stability in Fire-prone Forests

Matthew Hurteau

www.hurteaulab.org @MatthewHurteau

Main Points

- Management has near-term C costs
- In dry forests, treatments that reduce risk:
 - Stabilize C
 - Lower wildfire emissions
 - Achieve higher long-term C storage

Carbon Carrying Capacity

Time

A legacy of fire suppression

Larger, hotter wildfires

Fire-exclusion and CCC

Hurteau 2013

Decadal Wildfire Increase

Sierra Nevada+274%Southwest+462%

Westerling (2016)

Climate Change = Hotter & Drier

5-6°F increase in summer temperature3-15% decrease in summer precipitation

NOAA Technical Report NESDIS 142-5

The Fire & Climate Challenge

Hurteau et al. 2008

C Carrying Capacity Questions

- Treatment effects on C?
- Climate x Wildfire x Restoration effects on C?

The Teakettle Experiment

- 3 levels of thinning
- Crossed with burning

Treatments Incur a C Penalty

North et al. (2009), Wiechmann et al. (2015)

C Does Recover Over Time

Wiechmann et al. (2015)

Simulation Model: LANDIS-II

Dinkey Creek

- 4 Climate models
- High emissions (RCP 8.5)
- Treatments:
 - No-management
 - Naïve
 - Optimized

Krofcheck et al. (2018)

Determining Optimal Placement

Krofcheck et al. (2018)

Optimized = lower thinning losses

Naive Placement **Optimized Placement**

Krofcheck et al.

Fire severity reduction is equal

Krofcheck et al.

TEC: Planning for Extreme Events

Krofcheck et al.

Treatments Across the Sierra

Scenarios	Accelerated	Distributed
Understory thin	25% per decade	12% per decade
Prescribed fire	10-30 year return interval	

Elevation (m) <1000 1000-2000 2000-3000 3000-4000 >4000

Treatment area

Treatments = Less Stand-Replacing Fire

Treatment = Lower Cumulative Emissions

- Accelerated:
 - 42% lower wildfire emissions
- Distributed:
 - 31% lower wildfire emissions

Accelerated treatment stores more C

- Accelerated:
 - 156 Mg C ha-1
- Distributed:
 - 154 Mg C ha-1
- 2100 Difference:
 - 6 million Mg C

Management & C Stability

- Management has near term C costs
- In dry forests, treatments that reduce risk:
 - C is more stable
 - Emissions are lower
 - Long-term C storage is higher

Collaborators & Funding

- Dan Krofcheck
- Shuang Liang
- Louise Loudermilk
- Rob Scheller
- LeRoy Westerling

United States Department of Agriculture

National Institute of Food and Agriculture

