

Forest carbon pools and fluxes

Recent CO₂ Photosynthesis

Sources of confusion

- Stocks vs. fluxes
- Leakage and substitution
- Permanent vs. temporary emissions
- Future decay pool
- Carbon debt

13

prepare for their day.

Gary Larsen Far Side cartoon

Stocks at one point in time: W. Oregon

Stock change avoids most of the fuss

Example: change over 10 years, moderate fire event

The strategic inventory of Washington's forests:

Measuring a nice forest

The power of the FIA plot grid:

- Representative sample
- Consistent protocols
- Multiple data attributes
- Permanent plots
- Plot confidentiality

The FIA Plot Footprint and Measurements

Measurements to estimate carbon stocks

- Trees: DBH, HT, SPP, Defect, DecayClass

- Understory veg: SPP, Cover

- Down wood: DIA, SPP, DecayClass

- Forest floor: Litter + Duff Depths

- 6.8 ft radius microplot (seedlings, live+dead trees1-5" DBH)
- 24.0 ft subplot (live+dead trees>5" DBH, understory vegetation
- 58.9 ft macroplot (live+dead trees>24" E, >30" W)
 - Woody materials transects: 2 x 24' per subplot (>=0.25" DIA, forest floor depth)

- * Prior measurements include:
- Soil cores
- Longer CWD transects
- Large trees on hectare (2.4 ac)
- Lichen communities
- Plant diversity

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO, "

Improving our foundation

Cap and trade

Carbon tax or credits

National carbon monitoring system

Tree biomass equations

Primary problems: Scope of inference, extrapolation beyond original data, few spp, little belowground

Mortality and stand development

Total volume

Annual components of change

Live and dead accumulate with age

Undisturbed productive stands

How prevalent is disturbance?

Disturbance	Area (1000 ac) SE	F	Percent	Percent/yr	
Cut	3,477.6	152.4	11.9%	1.2%	
Fire	1,026.1	81.4	3.5%	6 0.4%]
Cut + Fire	161.1	33.9	0.6%	0.1%	2.00/ //
Insect or Disease	4,100.5	148.3	14.0%	1.4%	– 2.0%/yr
Weather	524.0	62.9	1.8%	6 0.2% __	
Incidental Cut	373.7	56.3	1.3%	0.1%	
None	19,532.4	254.0	66.9%	, D	
Total	29,195.5	182.9			

Many fires are not severe

Area by fire severity class, OR+WA NFS

~50% of area burned resulted in >60% overstory mortality

For Ecol Mgmt 359: 199

Most of the carbon is still there

Flux by pool and disturbance type, OR+WA NFS

There's still a lot of growing going on

Net change in live trees by disturbance, OR

Teasing out temporal signals

Timing and cause of mortality

Summary

- Strategic inventories track carbon pools and flux at landscape to regional scales
- Inventories inform causes and timing of flux
- Tree mortality is not an emission; dead wood tends to accumulate
- Many fires are not severe and the overall effect on emissions has been minor
- Live tree growth has been the dominant force of C flux in PNW, largely due to reduced harvest
- Detailed forest carbon reports for OR+WA in 2019

