Silvicultural Strategies for Climate Change Adaption in the PNW
Overview

- Adaptive mindset: uncertainty, risk management, & resilience
- Strategies: what is different?
- Case studies from 3 different forest types
Adaptive Mindset

Shifting from optimizing for growth to managing for resilience.

Basic risk management to reduce exposure to higher uncertainty:
• Diversify portfolio
• Buy more insurance
• Give up higher financial returns ➔ lower risk of losses
• Increase resilience to known and unknown stressors
• Manage for systems that are less prone to big crashes
• Monitor change, adapt, and respond quickly

• Forest ecosystems in PNW are adapted to change
• Foresters are observant, creative, adaptive problem solvers.
• Silviculture has gone through lots of evolution.
Adaptive Mindset

Challenge of Time: What time period to manage for?
Overview

- Adaptive mindset: uncertainty, risk management, & resilience

- Strategies: what is different?

- Case studies from 3 different forest types
1. Increase monitoring efforts & response capability

2. Understand your site: Climate, soils, topography, and suitable vegetation types

3. Planting site adapted species & using different seed sources: shift to greater drought tolerance

4. Manage for diverse forests

5. Manage density

6. Maintain & increase soil water storage

7. Control invasive species

What is different than what I already do?
1. Increase monitoring efforts & response capability

- Informal & formal
- Tracking seedling trials, mortality, etc.
- Share information with partners: ground data for larger scale monitoring
- Additional time & management cost
1. Increase monitoring efforts & response capability

- Informal & formal
- Tracking seedling trials, mortality, etc.
- Share information with partners: ground data for larger scale monitoring
- Additional time & management cost

Phone/Tablet based monitoring
DNR protocol & public website with results
1. Increase monitoring efforts & response capability

- Anticipate & plan for responses:
 - Mortality
 - Need to replant
 - Reframe salvage:
 green & dead tree treatments
Strategies

1. Increase monitoring efforts & response capability

- Anticipate & plan for responses:
 - Mortality
 - Need to replant
 - Reframe salvage:
 - green & dead tree harvests
 - Opportunities for new planting
Strategies

2. Understand your site

- Climate
- Soils
- Topography: aspect, solar radiation
- Identify vulnerable forests on your ownership
- Determine site adapted vegetation types, current and future
Strategies

2. Understand your site

- Climate:
 - Lots of climate websites with downscaled projections
 - Different degrees of change & species projections: different models & uncertainty
 - Filter through site factors & local knowledge: soils, microsites, etc

Making sense of projections for a specific place

ClimateNA_MAP

-- An Interactive Platform for Visualization and Data Access

Coordinates Input (click on the map or type in coordinates)

<table>
<thead>
<tr>
<th>Coordinate Type</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td>48.98</td>
<td></td>
</tr>
<tr>
<td>Longitude</td>
<td>-115.02</td>
<td></td>
</tr>
<tr>
<td>Elev (m)</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Historical</td>
<td>Normal_1961_1990</td>
<td></td>
</tr>
<tr>
<td>Future</td>
<td>Select a GCM and a period</td>
<td></td>
</tr>
</tbody>
</table>

Quick Tutorial | Help | Calculate

Annual Variables | Seasonal Variables | Monthly Variables
Strategies

2. Understand your site
- Climate:
 - Local effects

https://climatechange.ecoshare.info/walter-climate-diagram-tool-package/
Strategies

2. Understand your site

- Climate: What does it mean for vegetation?

Species Potential Habitat Tool

1. Select Species
 - Douglas-fir

2. Select Species Distribution Record
 - 1961 - 1990

3. Select Modeling Conditions
 - Select a future time range and a model

<table>
<thead>
<tr>
<th></th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011 - 2040</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2041 - 2070</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>2071 - 20100</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
Strategies

2. Understand your site

- Soils: water holding capacity, nutrients, rooting depth.
Strategies

2. Understand your site

- Soils: dig some pits!! Construction, roads, etc.
Strategies

2. Understand your site
 - Integrating climate, soils, & topography/solar radiation

Deficit = amount of drought stress due to lack of water when solar radiation is high

AET: amount of water transpired ~ productivity
2. Understand your site

- Deficit

https://deptofnaturalresources.box.com/s/35fo42x05zr88mr3n1rf4h3zuq9mx14j

Strategies

Making sense of projections for a specific place
2. Understand your site

- AET

Making sense of projections for a specific place
Strategies

2. Understand your site
 - Climate: lots of climate websites
 - Soils
 - Topography: solar radiation
 - Site adapted vegetation types, current and future

 - Higher AET ~ growth?
 - But higher moisture stress!

Making sense of projections for your site
Strategies

2. Understand your site
 • Identify vulnerable forests on your ownership:

 Climate - topography
 Soils - Veg Types

 Dense Hemlock ➔ Outwash Soils

 Large Cedar ➔ Shallow Soils
Strategies

2. Understand your site

- Identify vulnerable forests on your ownership:

 Dense Hemlock ➔ Outwash Soils

 Large Cedar ➔ Shallow Soils

 Moderate Density DF ➔ Deep Soils
Strategies

3. Planting site adapted species & using different seed sources: shift to greater drought tolerance
4. Manage for diverse forests:
 - Species composition, age classes, & structural conditions

Old/large trees:
 + Fire & drought tolerance, less transpiration, genetic variability, habitat
 - Windthrow potential, adaptability to new climate, large & tall crowns (water)

Young trees:
 + More plastic, adjust crowns, faster growth, shorter (wind, water), replaceable
 - Higher water use, lack habitat characteristics,
Strategies

4. Manage for diverse forests:
 • Species composition, age classes, & structural conditions:

 Multi-age, multi-species, multi-cohort stands:
 + Lower insect/pathogen risk, resilient to wind, variable response to drought.
 + More options for intermediate harvests → response to partial mortality
 + Higher habitat & aesthetic value

 - Less fire resistant
 - Require uneven-age management approaches: higher management costs
4. Manage for diverse forests:
 • Species composition, age classes, & structural conditions

Even-age stands
+ Can be necessary for mal-adapted stands, or stand replacing disturbances
+ Shorter rotations allow for shifting seed zones & species.
+ Simpler management & higher revenue when disturbance risk is low
+ Retention can add some benefits of multi-age stands
 - Less resistant to disturbance, higher risk
Strategies

4. Manage for diverse forests:
 - Species composition, age classes, & structural conditions

Need both uneven and even aged approaches:
Vary across ownership & landscape
Good insurance policy
4. Manage for diverse forests:
 - Gaps

 ➔ Plant new species, especially shade intolerants
 ➔ Increased snow retention & water yield.
 ➔ Non-tree plant diversity
Strategies

5. Manage density
 • Reduce moisture competition, increase vigor, & insect/pathogen resistance
 • Healthy crown ratios, stable height to diameter ratios.
 • Range of crown sizes. Large vs smaller crowns
5. Manage density
 - Density levels: light limited systems
Strategies

5. Manage density
 • Density levels: light limited systems
5. Manage density
 - Density levels: light limited systems
5. Manage density
 • Density levels: light limited systems

Max Stocking (SDI)
DF: 580
WH-RC: 800
RA: 350
PP: 380
Strategies

5. Manage density
 • Density levels: light limited systems

Max Stocking (SDI)
DF: 580
WH-RC: 800
RA: 350
PP: 380
5. Manage density
 - Density levels: light limited ➔ moisture systems

Max Stocking (SDI)
DF: 580
WH-RC: 800
RA: 350
PP: 380
5. Manage density
 • Density levels: light limited ➔ moisture systems

Max Stocking (SDI)
DF: 580
WH-RC: 800
RA: 350
PP: 380

Lower thinning levels:
35 RD ➔ 20-30
Strategies

5. Manage density
 • Density levels: light limited → moisture systems

Lower thinning levels
 35 RD → 20-30

14” QMD:
 - 35 RD 115 TPA
 - 25 RD 85 TPA
 - 20 RD 65 TPA

20” QMD:
 - 35 RD 65 TPA
 - 25 RD 45 TPA
 - 20 RD 35 TPA
Strategies

5. Manage density
 • Density levels: varying density across stand
6. Maintain & increase soil water storage
 • Retain downed wood, slash, non-tree vegetation, & soil organic matter
 • Gaps and moderate canopy cover ➔ soil water & snow retention
 • Minimize soil compaction during harvests

7. Control invasive species
Overview

- Adaptive mindset: uncertainty, risk management, & resilience
- Strategies: what is different?
- Case studies from 3 different forest types
Case Study 1:

High Vulnerability:
Red Alder Stand on old ag field & drier site:

Alder mortality likely soon, major die off with drought.
Case Study 1:
Red Alder Stand on old agricultural field: sandy soils, dry site

Soils

Current Deficit

Future Deficit
Case Study 1:

Red Alder Stand on old agricultural field: sandy soils, dry site

Current: moderate DF site. Future dry DF?
Case Study 1:

Harvest now to capture revenue and have resources to replant the site

Variable retention, leave patches of alder ➔ future gaps, seed source
 Retain some/most maples, red cedar
 Retain Douglas-fir: seed sources & old cohort
Leave tops, slash on site, plus some pulp logs (or don’t sell pulp)
Case Study 1:

- Plant 20-40% of DF from different seed zones? Track during planting
- Plant white oak, ponderosa pine?
- Anticipate natural regen: Douglas-fir, madrone, red alder, maple.
- Shrub control, but not 100%.
- Planting density: higher & plan on PCT, or lower with no PCT?
- Monitor & be prepared for mortality if we have dry years.
Case Study 2:
Moderate Vulnerability:
Young, dense DF plantation near homes, with infill of hemlock & hardwoods

Moderate to dry site: outwash soils, but lower deficit.

In future, may support red cedar & maple, but not hemlock
Case Study 2:

- Thinning to maintain healthy crowns and vigor
- Low thinning density: (20-25 RD)
- Remove western hemlock
- Retain RA for next entry? Retain red cedar
Case Study 2:

- Thinning to maintain healthy crowns and vigor

- Add 10-20% in ¼ - 1 acre gaps
 - Plant gaps to diversify forest.
 ~25% DF from drier seed zones
 Red cedar?
 Western white pine, lodgepole pine, grand fir
 Maple, Madrone?

- Monitor, be prepared for additional planting, salvage over time.

Alternatives

1. Don’t thin: let grow for habitat, see what happens

2. Don’t thin: grow until early retention harvest, then plant with new seed zones.
Case Study 2:
- Leave slash in majority of forest
- Within 100-200’ buffer off access roads & home:
 - Remove/reduce slash. Minimize multistory structure. Be prepared to maintain this.
- Broadleaf species buffer?
Case Study 3:

Lower Vulnerability:

Mature mixed conifer-red alder forest on north facing aspect of drainage: Likely to support red cedar, maple, alder, may support hemlock
Uneven-age harvest: group selection + ITS
- Low to moderate thinning density: wind?
- Favor Douglas-fir and red cedar.
- Remove most hemlock, alder, some DF
- Retain some maple, cottonwood, alder: especially in riparian areas
- No harvest or ITS in wetter microsites

Case Study 3:
Uneven-age harvest: group selection + ITS

Gaps with range of sizes:
- Target hemlock/mature alder patches for gaps, plus some areas
- Plant new species/seed zones: DF in larger gaps, red cedar, w. pine, GF?
- Track gaps during & after harvest for planting
Monitor, be prepared for additional planting

Plan next entry in 10 – 20 years, expand gaps, new gaps, etc.

If big mortality event. salvage + green thinning

➔ Uneven-age: response potential after disturbance

Case Study 3:
Strategies

What is different than what I already do?

1. Increase monitoring efforts & response capability
2. Understand your site: Climate, soils, topography, and suitable vegetation types
3. Planting site adapted species & using different seed sources: shift to greater drought tolerance
4. Manage for diverse forests
5. Manage density
6. Maintain & increase soil water storage
7. Control invasive species
Adaptive Mindset

- Forest ecosystems in PNW adapted to change
- Foresters are observant, creative, adaptive problem solvers.
- Silviculture has gone through lots of evolution.
 ➔ Climate change presents new challenges and opportunities.