Silvicultural Strategies for Climate Change Adaption in the PNW

Derek Churchill November 2019

- Adaptive mindset: uncertainty, risk management, & resilience
- Strategies: what is different?
- Case studies from 3 different forest types

Adaptive Mindset

Shifting from optimizing for growth to managing for resilience.

- Basic risk management to reduce exposure to higher uncertainty:
- Diversify portfolio
- Buy more insurance
- Give up higher financial returns → lower risk of losses
- Increase resilience to known and unknown stressors
- Manage for systems that are less prone to big crashes
- Monitor change, adapt, and respond quickly

- Forest ecosystems in PNW are adapted to change
- Foresters are observant, creative, adaptive problem solvers.
- Silviculture has gone through lots of evolution.

20-YEAR FOREST HEALTH STRATEGIC PLAN EASTERN WASHINGTON

Adaptive Mindset

Challenge of Time: What time period to manage for?

- Adaptive mindset: uncertainty, risk management, & resilience
- Strategies: what is different?
- Case studies from 3 different forest types

- 1. Increase monitoring efforts & response capability
- 2. Understand your site: Climate, soils, topography, and suitable vegetation types
- 3. Planting site adapted species & using different seed sources: shift to greater drought tolerance
- 4. Manage for diverse forests
- 5. Manage density
- 6. Maintain & increase soil water storage
- 7. Control invasive species

What is different than what I already do?

1. Increase monitoring efforts & response capability

- Informal & formal
- Tracking seedling trials, mortality, etc.
- Share information with partners: ground data for larger scale monitoring
- Additional time & management cost

1. Increase monitoring efforts & response capability

- Informal & formal
- Tracking seedling trials, mortality, etc.
- Share information with partners: ground data for larger scale monitoring
- Additional time & management cost

Phone/Tablet based monitoring DNR protocol & public website with results

1. Increase monitoring efforts & response capability

- Anticipate & plan for responses:
 - Mortality
 - Need to replant
 - Reframe salvage: green & dead tree treatments

1. Increase monitoring efforts & response capability

- Anticipate & plan for responses:
 - Mortality
 - Need to replant
 - Reframe salvage:
 - green & dead tree harvests
 - Opportunities for new planting

2. Understand your site

- Climate
- Soils
- Topography: aspect, solar radiation
- Identify vulnerable forests on your ownership
- Determine site adapted vegetation types, current and future

Making sense of projections

for a specific place

2. Understand your site

- Climate:
- Lots of climate websites with downscaled projections
- Different degrees of change & species projections: different models & uncertainty

Filter through site factors & local knowledge: soils, microsites, etc

	Overlays: Clim	ate maps 🔹 🔻	Species ranges V	Transparency(%):	0 25 5
ClimateNA_MAP	75 100 25 MAT_1961-199	0: -27.0		29.0°C	
An Interactive Platform for Visualization and Data Access	Мар	Satellite	NU	assam	G
•CFCG•		Canada	Hudson B	ay	and the second se
Coordinates Input (click on the map or type in coordinates)	人的理论。				Labrado
Latitude 48.98 Longitude -115.02	C BC	SK			NL
Elev (m) 1000 Historical Normal_1961_1990 V					100
Future Select a GCM and a period				ME	4
Quick Tutorial Help Calculate Annual Variables Seesenal Variables Monthly Variables		R ID WY NV UT United : CONTRACTOR	NE IA States KS MO KY OK AR TN MS AL GA	NY NH NA W MD DE NO	
Annual Variables Seasonal Variables Monthly Variables		A BA	LAN		

Making sense of projections for a specific place

- Climate:
- Local effects

Walter Climate Diagram Tool Package

Walter Climate Diagram Too Instructions.docx

https://climatechange.e coshare.info/walterclimate-diagram-toolpackage/

Making sense of projections

for a specific place

2. Understand your site

• Climate: What does it mean for vegetation?

- → Ŭ A	https://specieshal	bitattool.org/spht/					
Species Poter	ntial Habit	at Tool					
About	Tool	Advanced	1	Latand	100		1
Select Specie	es				Tula Reserv		
Douglas-fir	~		100			La	
2 Select Speci	es Distribut	ion Record	S. A.				
1961 - 1990	\sim			08			
3 Select Mode	eling Condit	ions 🛛		1.1		Redmond	
Select a future time	e range and a mo	del		- 4. J.	Seattle	Bellevue	
	RCP 4.5	RCP 8.5			1. A.V.	<u>.</u>	
2011 - 2040						Renton	
2041 - 2070				120	12 X	Kent	
2071 - 2100			п		Tacoma		

2. Understand your site

O Web So...

• Soils: water holding capacity, nutrients, rooting depth.

PE Churchi...

🔍 Vashon...

🔁 Vashon ... 🔨

6 🤴

11/6/2019

Vashon ... 💘 🗍 DRAFT ... 🎴 Churchi... 🎴 Gerson... 🎴 12.5.19 ... 🎴 NCF_Ec... 🎴 NCF_ti... 🎴 NW_Sci... 🎴 Churchi...

2. Understand your site

• Soils: dig some pits!! Construction, roads, etc.

2. Understand your site

• Integrating climate, soils, & topography/solar radiation

Deficit = amount of drought stress due to lack of water when solar radiation is high

AET: amount of water transpired ~ productivity

2. Understand your site

• Deficit

https://deptofnaturalresources.box.com/s/35fo42x05zr88mr3n1rf4h3zuq9mx14j

Making sense of projections

for a specific place

Making sense of projections for a specific place

2. Understand your site

• AET

2. Understand your site

- Climate: lots of climate websites
- Soils
- Topography: solar radiation
- Site adapted vegetation types, current and future
- Higher AET ~ growth?
- But higher moisture stress!

Making sense of projections for your site

2. Understand your site

 Identify vulnerable forests on your ownership:

Climate - topography Soils - Veg Types

Dense Hemlock → Outwash Soils

Large Cedar → Shallow Soils

- 2. Understand your site
 - Identify vulnerable forests on your ownership:

Dense Hemlock → Outwash Soils

Large Cedar → Shallow Soils

Moderate Density DF → Deep Soils

3. Planting site adapted species & using different seed sources: shift to greater drought tolerance

4. Manage for diverse forests:

Species composition, age classes, & structural conditions

Old/large trees:

+ Fire & drought tolerance, less transpiration, genetic variability, habitat

 Windthrow potential, adaptability to new climate, large & tall crowns (water)

Young trees:

+ More plastic, adjust crowns, faster growth, shorter (wind, water), replaceable

- Higher water use, lack habitat characteristics,,

- 4. Manage for diverse forests:
 - Species composition, age classes, & structural conditions:

Multi-age, multi-species, multi-cohort stands:

- + Lower insect/pathogen risk, resilient to wind, variable response to drought.
- + More options for intermediate harvests → response to partial mortality
- + Higher habitat & aesthetic value
- Less fire resistant
- Require uneven-age management approaches: higher management costs

- 4. Manage for diverse forests:
 - Species composition, age classes, & structural conditions

Even-age stands

- + Can be necessary for mal-adapted stands, or stand replacing disturbances
- + Shorter rotations allow for shifting seed zones & species.
- + Simpler management & higher revenue when disturbance risk is low
- + Retention can add some benefits of multi-age stands

- Less resistant to disturbance, higher risk

4. Manage for diverse forests:

Species composition, age classes, & structural

Need both uneven and even aged approaches: Vary across ownership & landscape Good insurance policy

4. Manage for diverse forests:

• Gaps

- Plant new species, especially shade intolerants
- ➔ Increased snow retention & water yield.
- ➔ Non-tree plant diversity

5. Manage density

- Reduce moisture competition, increase vigor, & insect/pathogen resistance
- Healthy crown ratios, stable height to diameter ratios.
- Range of crown sizes. Large vs smaller crowns

5. Manage density

• Density levels: light limited systems

- 5. Manage density
 - Density levels: light limited systems

- 5. Manage density
 - Density levels: light limited systems

- 5. Manage density
 - Density levels: light limited systems

<u>Max Stocking (SDI)</u> DF: 580 WH-RC: 800 RA: 350 PP: 380

- 5. Manage density
 - Density levels: light limited systems

<u>Max Stocking (SDI)</u> DF: 580 WH-RC: 800 RA: 350 PP: 380

- 5. Manage density
 - Density levels: light limited → moisture systems

- 5. Manage density
 - Density levels: light limited → moisture systems

Lower thinning levels:

35 RD 🗲 20-30

- 5. Manage density
 - Density levels: light limited → moisture systems

Lower thinning levels 35 RD → 20-30

14" QMD:

- 35 RD 115 TPA
- 25 RD 85 TPA
- 20 RD 65 TPA

20" QMD:

- 35 RD 65 TPA
- 25 RD 45 TPA
- 20 RD 35 TPA

5. Manage density

• Density levels: varying density across stand

- 6. Maintain & increase soil water storage
 - Retain downed wood, slash, non-tree vegetation, & soil organic matter
 - Gaps and moderate canopy cover → soil water & snow retention
 - Minimize soil compaction during harvests
- 7. Control invasive species

- Adaptive mindset: uncertainty, risk management, & resilience
- Strategies: what is different?
- Case studies from 3 different forest types

High Vulnerability: Red Alder Stand on old ag field & drier site:

Alder mortality likely soon, major die off with drought.

Red Alder Stand on old agricultural field: sandy soils, dry site

Soils

Current Deficit

Future Deficit

Red Alder Stand on old agricultural field: sandy soils, dry site

Current: moderate DF site. Future dry DF?

Future Deficit

Harvest now to capture revenue and have resources to replant the site

Variable retention, leave patches of alder → future gaps, seed source Retain some/most maples, red cedar Retain Douglas-fir: seed sources & old cohort Leave tops, slash on site, plus some pulp logs (or don't sell pulp)

- Plant 20-40% of DF from different seed zones? Track during planting
- Plant white oak, ponderosa pine?
- Anticipate natural regen: Douglas-fir, madrone, red alder, maple.
- Shrub control, but not 100%.
- Planting density: higher & plan on PCT, or lower with no PCT?
- Monitor & be prepared for mortality if we have dry years.

Moderate Vulnerability:

Young, dense DF plantation near homes, with infill of hemlock & hardwoods

Moderate to dry site: outwash soils, but lower deficit.

In future, may support red cedar & maple, but not hemlock

- Thinning to maintain healthy crowns and vigor
- Low thinning density: (20-25 RD)
 Remove western hemlock
- Retain RA for next entry? Retain red cedar

- Thinning to maintain healthy crowns and vigor
- Add 10-20% in ¼ 1 acre gaps
 Plant gaps to diversify forest.
 ~25% DF from drier seed zones Red cedar?
 Western white pine, lodgepole pine, grand fir Maple, Madrone?
- Monitor, be prepared for additional planting, salvage over time.

Alternatives 1. Don't thin: let grow for habitat, see what happens

2. Don't thin: grow until early retention harvest, then plant with new seed zones.

- Leave slash in majority of forest
- Within 100-200' buffer off access roads & home:
 - -Remove/reduce slash. Minimize multistory structure. Be prepared to maintain this.
 - Broadleaf species buffer?

Lower Vulnerability:

Mature mixed conifer-red alder forest on north facing aspect of drainage: Likely to support red cedar, maple, alder, may support hemlock

- Uneven-age harvest: group selection + ITS
- Low to moderate thinning density: wind?
- Favor Douglas-fir and red cedar.
- Remove most hemlock, alder, some DF
- Retain some maple, cottonwood, alder: especially in riparian areas
 No harvest or ITS in wetter microsites

Uneven-age harvest: group selection + ITS

Gaps with range of sizes:

- Target hemlock/mature alder patches for gaps, plus some areas

- Plant new species/seed zones: DF in larger gaps, red cedar, w. pine, GF?

- Track gaps during & after harvest for planting

Monitor, be prepared for additional planting

Plan next entry in 10 – 20 years, expand gaps, new gaps, etc.

If big mortality event. salvage + green thinning

→ Uneven-age: response potential after disturbance

What is different than what I already do?

- 1. Increase monitoring efforts & response capability
- 2. Understand your site: Climate, soils, topography, and suitable vegetation types
- 3. Planting site adapted species & using different seed sources: shift to greater drought tolerance
- 4. Manage for diverse forests
- 5. Manage density
- 6. Maintain & increase soil water storage
- 7. Control invasive species

Adaptive Mindset

- Forest ecosystems in PNW adapted to change
- Foresters are observant, creative, adaptive problem solvers.
- Silviculture has gone through lots of evolution.
 → Climate change presents new challenges and opportunities.

