Forest Hydrology for Climate Adaptation

Rolf Gersonde Watershed Management Division Seattle Public Utilities

Forest Hydrology Objectives

- Regulate run-off from forested watersheds
- Improve in-stream habitat for fish
- Tree water status to increase resistance to disturbances
- Forest productivity and habitat functions

Water Cycle Regulation

STORMWATER DISCHARGES FROM VARIOUS LAND COVERS

- Peak Flow
- Base Flow
- Water Quantity

Water Cycle Regulation

Regulating total Run-off: Effect of Forest Cover on Hydrology

- Watershed yield
- Peak-flows

Copyright Brett Baunton

Hydrologic regulation

Reducing Canopy Cover Increases Annual Stream Flow

Modified after Bosch and Hewlett 1982, JoH

Forest Cover Removal and Increase in Peak Flows

Changes in peak flow above bankfull discharge in relation to forest removal by harvesting, fire, or insects in North America, adapted from Plamondon (1993, 2002).

Difference in Runoff between Treated and Untreated Catchments -Recovery of Hydrologic Regulation

Perry and Jones Ecohydrology 2016

Managing Peak Flows: Forest Management Effects

- Hill slope flow routing to streams
- Culvert Sizing for Peak Flow Events
- Rain-on-Snow Events

Hillslope Flow Routing with Road Drainage

Perched Culvert Undersized for Peak Flow Events

Increased Culvert Sizing for Future Peak Flow Events

Adjusting Culvert Size to Projected Peak Flow Increase

RUNOR

Snow-line

Snowcover exposed to warm, windy weather = Melt

Rain-on-Snow event produces Larger AREA contributing overland runoff to stream

Freezing Level Elevation during Winter Storms:

Past storm data

Freezing Level Elevation during Winter Storms:

Freezing Level Elevation during Winter Storms:

Managing Base Flows: Hydrologic Effects of Stand Age and Structure

Water Use of Young and Old Riparian DF/WH Forests

Nisqually Community Forest VELMA modeling

Bob McKane¹, Brad Barnhart¹, Jonathan Halama¹, Paul Pettus¹, Allen Brookes¹, Kevin Djang², Joe Ebersole¹, Greg Blair³, Justin Hall⁴, Joe Kane⁵, Paula Swedeen⁶, Laurie Benson⁷

Watershed 10, HJ Andrews, OR

- 0.1 km² headwater catchment
- 450 year-old conifer forest
- Clearcut in 1975
- Stream discharge data 1969-present

Forest age effect turned OFF

Watershed 10, HJ Andrews, OR

- 0.1 km² headwater catchment
- 450 year-old conifer forest
- Clearcut in 1975
- Stream discharge data 1969-present

Forest age effect turned ON

Baseflow for different Forest Landscape Age using the VELMA Model

Simulated September Minimum Flow

Average for 2006-2014

Effect of Canopy Cover on Hydrologic Processes

llstedt et al. 2016, Nature

Streamflow responses to alternative forest practices (Tolt Watershed, VELMA Model)

Photo: Karen Iwachow.

Climatic Exposure Effects of Topography and Aspect

Evapotranspiration

Radiation Temperature Wind

Snow Cover

Growing Season Water Supply Climate Exposure Topographic Position Soil Depth Water Flow

Soil Type Water Nutrients

Seattle Public Utilities

Topographic Position Index

Greater Climate Exposure on Ridges and Upper Slopes with shallow soil and less available water

Topographic Position Index Jenness Ent. 2006 ArcView Extension

- 1, 2, 3 Canyons and Drainages
- 4 Valleys
- 5, 6 Plains and Slopes
- 7 Upper Slopes
- 8, 9,10 Ridges

Reference Evapotranspiration Model

using Solar Radiation and Temperature (elevation) for the months of June – July – August, 30 m Resolution

Greater Evaporative Demand on South-facing Slopes

Seattle Public Utilities

Climatic Exposure Model

using ref. Evapotranspiration, Topographic Position, Snow Cover, and Soil

Seattle Public Utilities

- Older forest for hydrologic regulation and reduced transpiration
- Adjust culvert size to future peak flow events

- Lower stand density for reduced transpiration and resource competition
- Regenerate trees in canopy gaps to reduce water stress

- Canopy gaps to increase snow accumulation and limit snow-on-rain events
- Mixed-species stands and variable canopy for resilient water cycle regulation

• Group Selection Regeneration System for:

- Snow retention in canopy gaps
- Regeneration in gaps to reduce moisture stress
- Regenerating mixed species
- Matrix thinning to reduce transpiration and interception
- Dispersed opening to reduce effects of Rain-on-Snow

Rolf.Gersonde@seattle.gov