Climate change and insect pests of trees

NNRG 12.5.19

Christine Buhl Ph.D., ODF Entomologist

Climate change impacts in PNW

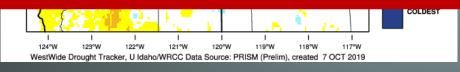
Less king and more wildfires Increasing average temperature and duration

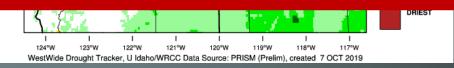
Decreasing precipitation in summer and

Climate change: Drought

Drought =

- 1. extended warm and/or dry days
- 2. lack of consistent precipitation (including snowpack)




Drought status summary email:

https://tinyurl.com/drought-report

Drought maps:

https://tinyurl.com/droughtmap-noaa

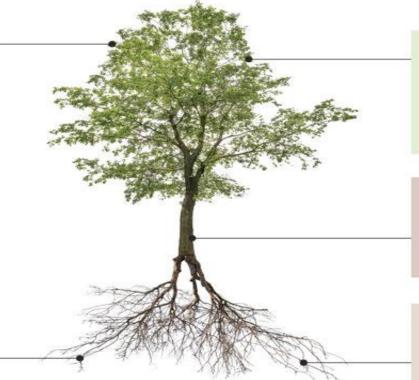
Effects of climate change: Trees

- Moisture and heat stress
- Increased CO_2 = increased growth ($1 H_2O$ need)
- Stomatal closure = starvation/reduced growth and function
- Less moisture and carbon allocation to secondary metabolites (i.e., defenses)
- Altered phenology = asynchrony
- Longer growing season
- Shifted distribution and/or range

Drought mechanisms

- Collapsed vascular system
- Reduced roots
- Fewer resources for growth & defense (resistance and tolerance)

Physiological traits (leaf)


- Stomatal regulation
- Turgor loss point
- Cuticular conductance

Physiological traits (common)

- Vulnerability to cavitation (Ψ₁₂, Ψ₅₀, Ψ₈₈)
- Maximum hydraulic conductance
- Capacitance and water storage
- Cell membrane permeability (aquaporin regulation)

Physiological traits (root)

- Cortical lacunae formation
- Root shrinkage/hydraulic isolation
- Soil-root hydraulic conductance

Morphological traits (shoot)

- · Stomatal anatomy
- · Leaf vein density
- Total leaf area
- · Leaf shedding/drought deciduous
- Leaf to sapwood area ratio

Xylem anatomical traits

- Xylem conduit size, number and connectivity
- · Pit membrane thickness/porosity
- Wood density

Morphological traits (root)

- Root to shoot ratio
- · Rooting depth
- Fine root loss

Drought signs and symptoms

- Topkill
- Branch tip dieback or flagging
- Thinning crown
- Stress cones
- Asymmetrical crown
- Leaf scorch
- Mortality across species
- Observe what species are thriving

Other factors interacting with drought

- Previous stress
- Soil type
- Aspect
- Topography and site microclimates (ridge, edge, draw effects
- Timing, duration, quickness of change
- Tree height
- Vegetation cover
- Winds

etc....

STRESSED TREES = SUSCEPTIBLE TREES

Effects of climate change: Insects

- Earlier emergence, later diapause
- Altered synchrony with hosts and natural enemies
- Longer feeding periods (=higher fecundity?)
- Shorter life stages and more generations possible
 Only over the loooong term evolutionary process)*
- Reduced winter mortality (fewer late freeze events)
- Range shifts

Case studies: spruce aphid

Sap-sucking insect in Sitka spruce along north coast

Case studies: flatheaded fir borer

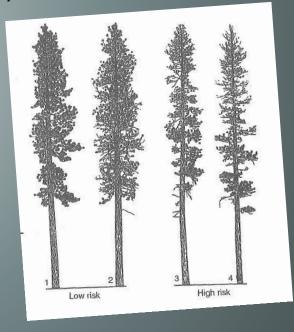
Drought and fire damage resulting in subsequent mortality from native, woodboring beetle

Case studies: Douglas-fir beetle

beetle to infest and spread to adjacent trees, increased outbreak risk during droughts

Insects most associated with drought

Douglas-fir


- Doug-fir beetle (>10" dbh, attracted to blowdown)
- DF pole and engraver beetles (small diameter)
- Flatheaded fir borer

True fir

Fir engraver (mostly grand fir in the Valley)

Pine

Ips (3-8" diameter, attracted to fresh slash)

Trees are also still at risk after attacks due to reduced tolerance

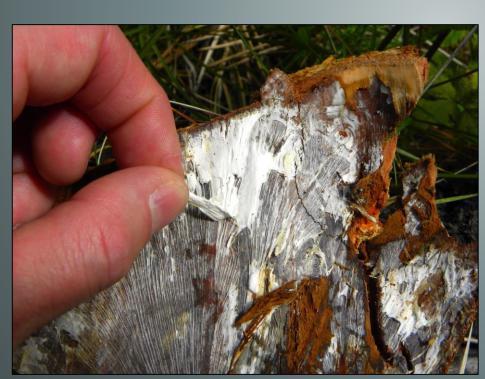
Effects of climate change: Diseases

- Temperature and moisture changes (+/influence on pathogen presence or
 virulence)
- Altered phenology (spore release, insect vector synchrony, etc.)
- Pathogens are better adapted for evolution (short lifespan, quick and prolific reproduction) than their long-lived hosts
- Altered distribution and range (ability to travel in wind, water, soil, equipment, etc.)

Case studies: diseases

Temp and moisture affect survival, reproduction, spread, infection:

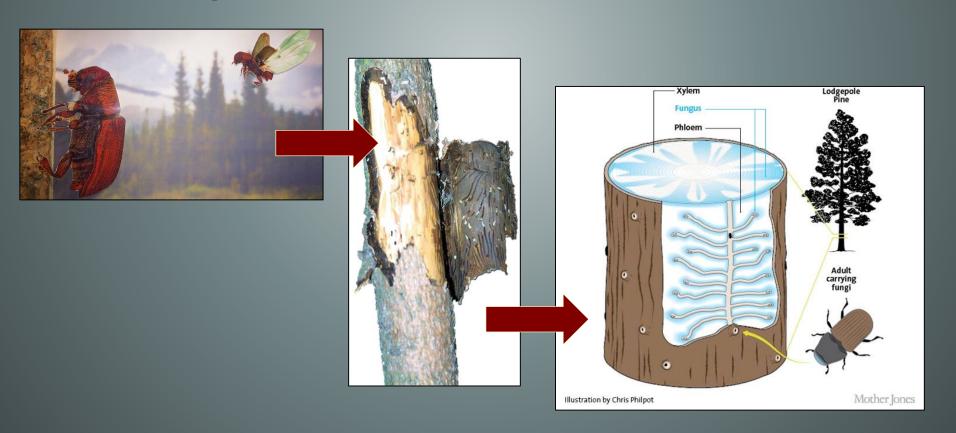
Sudden Oak Death, Swiss needle cast, dothistroma needle blight, white pine blister rust



Case studies: diseases

Temp and moisture affect host resistance:

Armillaria, diplodia/sphaeropsis shoot blight, pitch canker



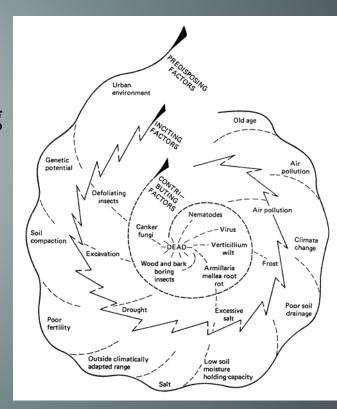
Case studies: diseases

Impacts on vectors:

Walnut twig beetle, elm beetles, ambrosia beetles, etc.

Case studies: tree declines (abiotic?)

- Redcedar ???
- Bigleaf maple ???
- Grand fir ???



Decline building in intensity

Manion Spiral:

- Trees can go into a decline if there is first a factor that will predispose the tree to decline, followed by an inciting factor to trigger the decline, and finally a contributing factor that could eventually kill the tree
- Most documented decline examples are resulting from several factors
- Example: drought stresses trees → wildfires
 occur in the environment → insects take
 advantage of influx of drought and fire
 damaged trees (1-2 punch to tolerance and
 resistance)

General climate change management

- 1) Don't assume this is a short-term problem
- 2) Plant the right species in the right place
- 3) Promote resilience
- 4) Anticipate and plan for associated I&D risks
- 5) Manage pine slash and Doug-fir blowdowns
- 6) Increase diversity
- 7) Don't fertilize
- 8) Manage understory weeds
- 9) Long, slow (maintained) irrigation
- 10) Thinning (windthrow and soil drying are post-thinning risks)
- 11) Avoid extensive work and mechanical damage during droughts

Soil drought predictions

Know your soils: https://tinyurl.com/nrcssoils

RESOURCES

General:

- USDA Pacific Northwest Climate Hub (http://climatehubs.oce.usda.gov/northwest)
- Climate Change Resource Center (http://www.fs.usda.gov/ccrc/)
- TACCIMO (http://www.taccimo.sgcp.ncsu.edu/tbl sector list.php)
- ANREP Climate Science Initiative (https://sites.google.com/site/anrepclimate/home)
- Engaging Private Forest Owners on Climate Change Issues

 (http://www.nap.edu/catalog/18807/climate-change-education-engaging-family-private-forest-owners-on-issues)

Climate change basics:

- Climate Change Resource Center (http://www.fs.usda.gov/ccrc/climate-basics/education)
- NOAA Climate.gov (https://www.climate.gov/maps-data/primer/climate-data-primer)
- American Assn. for the Advancement of Science (http://whatweknow.aaas.org/consensus-sense/)

Adaptation/Mitigation

- Climate, Forests & Woodlands (http://articles.extension.org/climate_forests_woodlands)
- Oregon Forests and Climate Change (http://blogs.oregonstate.edu/orforestscc/)

Tools/Applications

- Drought monitoring survey (<u>https://tinyurl.com/forestdroughtsurvey</u>)
- Ecotrust: Forest Planner (http://forestplanner.ecotrust.org/)
- N. Institute of Applied Climate Science (http://www.adaptationworkbook.org/)
- Forest Forecasts (<u>http://forestforecasts.org/</u>)
- Rocky Mt. Research Station (http://forest.moscowfsl.wsu.edu/climate/species/index.php)