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Storm events
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Water cycle regulation

1688.88

16.08 M

e Mediterranean climate:
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* Growing season off set from period of high water availability Baseflow
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Climate trends in regional hydrologlc components

 Trends depict % change in 85 years (1921-2006)
* P = precipitation

* ET = evapotranspiration

* R =runoff
* R/P = runoff: precip.

e SM = soil moisture

e SWE = snow water equivalent
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CLIMATE (STORAGE)

Decrease in shallow soil water in Douglas-fir forests

* Mild to severe climate change
model scenarios suggest decrease
in annual soil available water
supply by 8 to 19%

e Summer available water supply will
decrease 25 to 72%

* Greatest decreases in Washington
and Oregon coast regions

Average Monthly Available Water Supply (mm)
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Groundwater — western U.S.

« Knowledge gaps in understanding
hydrologic flowpaths in mountain systems

e Little change to slight increase in northern
aquifers

 Decline in Mountain system recharge due
to decreased snowpack (but dependent
on elevation)

CLIMATE (STORAGE)
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a) April 1 Observed SWE Trends 1955-2016
N B
~ .

Declines in snowpack across the western US

 Snotel sites:

* 90% declining trend
* 33% significant declines (5% by chance)
e 2% significant increases (5% by chance)

 Declining trends observed across all months, states,
and climates

 Declines were largest in spring, Pacific states, and
locations with mild winter climate

Mote et al. 2018
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Role of warming in snowpack decline

Modelled observations Temperature removed
b) April 1 VIC SWE Trend 1955 to 2014 c) April 1 VIC SWE Trend(Detrended) 1955 to 2014

e Red =decline

e Blue =increase
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Streamflow declining in the PNW

 Declines in annual total, summer mean, and peak
streamflow since 1951 (Forbes et al. 2019)

 Majority of gauges show declining trends in low
streamflow indices (Kormos et al. 2015)

e 7910 = minimum flow for 1 week with a probability
of occurrence =0.10

7910 Summer

CLIMATE (DISCHARGE)

Mean August Flow
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Kormos et al. 2016
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Earlier streamflow timing  p)fTrends in cT
(1948-2002)
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* Earlier onset of springtime 60" = = BCF
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* Earlier streamflow timing
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Stewart et al. 2005
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Snow response to fire
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Streamflow response to fire
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Streamflow response to fire

* Increased streamflow

* Increased peak flows, shortened time to peak flow, increased susceptibility
to flash floods (2x to 5x increase in peak flow over 6-7 y following fire)
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1 net
precipitation

understory
transpiration

Hydrological response to Swiss Needle
Cast

e Foliar disease leads to chronic foliar occlusion that
affects canopy architecture

understory
<+« and litter
evaporation
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‘ overstory B
transpiration

* Discharge generally increased with increasing
percentage of Swiss Needle Cast in the watershed

} interception

1 net
precipitation

' ili i ; derst
* Managing for resilience (e.g., mixed species stands) | P

transpiration
may aid in buffering increases in streamflow
I understory
,/,,_,;.’ : _ ., 1 and litter
f _ "‘f\ > - evaporation
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Bladon et al. 2019 |




Q Hydrological response to forest
management
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CHANGES TO FOREST WATER BALANCE

Hydrological responses to forest harvest
PRECIPITATION *
* Immediate response to overstory forest harvest well , l,’ '/ E
documented i > \
Typically:
* Increase in streamflow ' Lo

SURFACE WATER
INFILTRATION

. . . INTERCEPTION W
* Decreasein evapotranspiration

pall JEE
AANANANANAN AAAAAAN v ¢ &

« Decrease in canopy interception L0 0 g ey TR e T

NCASI 2009



FOREST HARVEST

Reducing canopy cover increases annual streamflow

Hardwood Conifer

o me we me r wm E s Er E . Em  Em mm em mm Em Em e e e e e em mm e Em e mm Em Em e e e em e e e o =
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Pelcentage change in forest cover perceltage change in forest cover

Brown et al. 2005, updated from Bosch and Hewlett 1982




FOREST HARVEST

Hydrologic recovery to historical harvest (annual)
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Brown et al. 2005
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FOREST HARVEST

Stages of hydrologic recovery (annual)

« Stage 1: regeneration

e Stage 2: regrowth

e Stage 3: canopy self-thinning, LAI
declined with ETS and water yield
recovering

2.0 5

Normalized streamflow responses
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preharvest
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Du et al. 2015




FOREST HARVEST: HYDROLOGICAL EXTREMES

Reducing canopy cover increases peak flow in the
Pacific Northwest (immediate response)
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FOREST HARVEST: HYDROLOGICAL EXTREMES

Reducing canopy cover typically increases low flow
in the Pacific Northwest (immediate response)

. 5.0
 |ncreased streamflow in low -
. 4.0
flow period £ g
&E 30
& =
* Alsea: Reduced number of low 52 20
. o
flow days post-logging 1T H H H H
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* Hinkle: Increased August flow 5§ i | | |
7~ 2003 2004 T 2006 2007 2008 T 2009 2010
-1.0
. -2.0 | |
 An exception —> Bull Run T Sacond Harvest
Flggre 5. Change in August streamflow for the South Fork Hinkle Creek 2003-2010. First forest harvest occurred in winter of
2005-2006; second forest harvest in winter of 2008-2009.
* Decreased low flow S -
e Fog drip can be important V
hydrologic component ; C 5 ™

LOW FLOW AT FC-2 (cm)

Surfleet and Skaugsdi 201380



(b)

% difference, treated minus control
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Hydrologic recovery to historical harvest

- (summer low flow)
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Perry and Jones 2016
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How are summer low flow deficits related to forest

harvest? o Wetersnea 1 )
* H1: Establishment of alder in riparian zone ~ 357 ]‘\ : :
. . 2 3.0 |
following harvest for WS1 but not WS3 (Hickset % 25 |
al. 1991) ‘;” 2.0 1
g 15
g 1.0 + Old growth
= 05+ i
* H2: Increased transpiration rates of young 00 b YN VWIWNY ]
relative to old growth Douglas Fir (Moore et al. 180° 200220 Dzaioofyfio 2803000320
2004; Perry and Jones 2016) 5 . emnmnasansnaney e
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Transpiration rates vary by age and species

e Sap flux density was 1.4X greater in young Red
alder (A. rubra) than in young Douglas-fir (P.
menziesii) from July - September

Sap flux density (kg m~2 day 1)

 Red alder water use was statistically different
from Douglas-fir starting in late July
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Age differences in seasonal drought
response

 ET declines in early seral conifer stands as the summer
progresses (lrvine et al. 2002; Wharton et al. 2009;
Kwon et al. 2018)

* Early seral trees

* inability to induce stomatal closure for water conservation

 alimited root system that may preclude access to deeper
water sources

 extreme microclimate (Irvine et al. 2002; Wharton et al.
2009).
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Q Forestry best management practices
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Hydrologic response

Riparian buffers — Runoff, ET (microclimate)

* Leave tree requirements

e Stream crossings — Water routing, runoff, soil

* Forest roads, skid trails, and compaction/infiltration

landings

e Erosion control

* Fertilizers and herbicides — ET (overstory & understory,
species composition, density),

* Harvesting and reforestation _
hydrologic recovery

* Site preparation

e Limit size of harvest unit
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How does placement of selective clearcut affect
streamflow?
* 50% of trees were removed in different configurations i reieeve ceared
16 _ [ ] Wwater yield

1 5th percentile flow

 On average increased annual yield by 37% (peak flow by
19%)

1.4 -

 Aspect (N vs. S)- similar

1.2 4

* Location — greater flow when clearcut placed upstream
(39% & 23% increase) than when placed further

Normalized runoff volume and 5th percentile peakflow

0 0 H 0-0 T T T T T T T
downstream (35% & 14% increase) — o8 o ol ol ol Sl ol (el e
e R o
deatc-“‘ a::a(ﬁ“‘ ‘ew:es‘ ot (o gu wpP? T N gue? oed™ °
. 0o
 related to snowpack dynamics Jois Spatial cutting patters

Du et al. 2015
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Forest harvest: snow response

 Review across 65 sites (32 studies):

* Snow accumulation increased with less forest cover (r? =57%)

* Snow accumulation generally increased with size of the clearcut

« However, snowmelt (ablation) rates also increase (r? =72%)

 Canresultin earlier melt (e.g. 10 day) despite an (40%) increase in
snow accumulation in a clearcut (i.e., Berndt 1965)

Varhola et al. 2010
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Forest harvest: snow response 60 +------ Clearcut
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ADAPTATION STRATEGIES

Adaptation strategies for forest hydrology

e Fewer forest roads

* Reduce tlow routing {storm events) e Reduce soil compaction (technological

improvements)

. Y H °
. Consider ecosystem scale Tree species, age, and climate must all be

. considered
evapotranspiration throughout
harvest rotation & seasonal * Reduced stand density?
dynamics
e Canopy gaps to increase snow accumulation
* Increase snow accumulation * Mixed species stands or variable canopy
and/or reduce snowmelt rate structure to allow for greater snow

accumulation
Courtesy of: Rolf Gersonde
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Adaptation strategies for forest hydrology

e Group Selection Regeneration System for:

* Snow retention in canopy gaps

* Regeneration in gaps to reduce moisture stress

* Regenerating mixed species

 Matrix thinning to reduce transpiration and interception
 Dispersed opening to reduce effects of rain-on-snow events

UBC Ministry of Forests, Introduction to Silvicultural Systems, second edition
(July 1999)

Courtesy of: Rolf Gersonde
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Questions?

Ashley Coble, Ph.D.

Forest Watershed Scientist

(541)249-3983 WWwWWw.ncasi.org




