Fire Risk in Westside Forests of the Pacific Northwest

Matt Reilly

USFS PNW Research Station Corvallis, Oregon

Westside Fire

Current Normal (1981–2010) Large wildfires between 2001–2015

Davis et al. 2017

Ignition

Spies et al. 2018

Regional Bioclimatic Setting

Summer Temperature

Summer Precipitation

Summer Drought

Reilly et al. 2018

Frequent, Low Severity

- More typical of the dry forest east of the Cascades but characteristic of low elevation oak woodlands
- Numerous fire scar studies
- Conditions for burning are common, but fuels usually limit fire behavior and effects

Frequent, Low Severity

- More typical of the dry forest east of the Cascades but characteristic of low elevation oak woodlands
- Numerous fire scar studies from ponderosa pine
- Conditions for burning are common, but fuels usually limit fire behavior and effects

Illustration by Bob Van Pelt

Frequent, Low Severity

- Long period of fire exclusion
- Increased density and changes in composition
- Increased potential for uncharacteristic fire behavior and effects
- Loss of old legacy trees

Illustration by Bob Van Pelt

Mixed Severity

- Increases in importance towards the south where ignitions and summer drought become more prominent
- Limited number of fire scar studies
- More complex and less well understood

Mixed Severity

- Increases in importance towards the south where ignitions and summer drought become more prominent and productivity is relatively high
- Limited number of fire scar studies
- More complex and less well understood

Figure 3-16—Mosaic of fire severity patches in a Douglas-fir and western hemlock landscape in the western Cascade Range of Oregon. Black = a high mortality area (>70 percent), vertical lines = moderate mortality (30 to 70 percent), and stippled = low mortality areas

Morrison and Swanson 1991

Mixed Severity

Spies et al. 2018

Fine and Coarse Scale Mosaic

- Strong "bottom-up" controls on fire behavior and severity
- Forest structure and topography are important
- Occasional large patches of high severity-fire in weather driven fires

Fine and Coarse Scale Mosaic

Infrequent, High Severity

- Long time periods between stand-replacing fires
- Evidence for pre-settlement ecological role
- Primarily in wet or cool forest types

Illustration by Bob Van Pelt

Coarse Scale Mosaic

Oregon Coast Range Fire History (1850 to 1940)

Teensma et al. 1991

Figure 11 Tillimook Fire, August 25, 1933 Courtesy of National Archives

Figure 11 Tillimook Fire, August 25, 1933 Courtesy of National Archives

Figure 11 Tillimook Fire, August 25, 1933 Courtesy of National Archives

Figure 11 Tillimook Fire, August 25, 1933 Courtesy of National Archives

East Wind Events

Average # of Dry East Wind Days

data from Cramer 1957

East Wind Events

Average # of Dry East Wind Days

data from Cramer 1957

East Wind Events

data from Cramer 1957

Tillamook Daily Spread

Daily Fire Spread 1933

Weather

Date	Max Temp	Min R.H.	Wind Direction	Wind Speed	
Aug 14	90-97	20-30%	NNE	18-23mph	
Aug 15	100-105	15-25%	E shift to W	15-20mph	
Aug 16	70-75	35-45%	E-SE	5-10mph	
Aug 17	unknown	40-50%	West	5-10mph	
Aug 18	unknown	45-55%	West	5-10mph	
Aug 19	unknown	45-55%	West	5-10mph	
Aug 20	unknown	40-50%	North	10-15mph	
Aug 21	unknown	25-35%	East	15-25mph	
Aug 22	unknown	20-30%	East	20-25mph	
Aug 23	unknown	20-30%	East	10-15mph	
Aug 24	unknown	25-35%	E-NE	10-15mph	
Aug 25	unknown	20-25%	East	25-35mph	
Aug 26	unknown	Rising to	E shift to W	20-28mph	
_		>60%		decreasing	

Current Fire in the West Cascades

Oregon Western Cascades

Columbia River Gorge National Scenic Area 🔘 🔜 🎯

United States Department of Agriculture

EAGLE CREEK FIRE PROGRESSION September 2nd - September 28th, 2017

Indian Creek Fire				
Date Daily Growth ; Total				
	09/01	373 ; 373		
	09/03	432 ; 805		
	09/04	129 ; 934		
Eagle Creek Fire				
	Date Da	ily Growth ; Total		
	09/03	1,856 ; 1,856		
	09/04	12,601 ; 14,457		
	09/05	15,426 ; 29,885		
	09/06	2,356 ; 32,241		
	09/10	1,744 ; 33,985		
	09/11	510 ; 34,496		
	09/12	2,140 ; 36,636		
	09/13	3,775 ; 40,411		
	09/14	4,344 ; 44,755		
	09/15	1,406 ; 46,161		
	09/16	1,343 ; 47,504		
	09/17	59 ; 47,563		
	09/18	48 ; 47,611		
Arche	er Mtn Fi	ire		
	Date Da	ily Growth ; Total		
	09/04	66 ; 66		
	09/05	45 ; 111		
	09/06	90 ; 201		
	09/09	36 ; 238		
	09/10	13 ; 251		
	09/11	9 ; 260		

Columbia River Gorge National Scenic Area 🛞 🔜 🙆

373 ; 373

432;805

129;934

1,856; 1,856

15,426 ; 29,885 2,356 ; 32,241

1,744 ; 33,985 510 ; 34,496

2,140 ; 36,636

3,775 ; 40,411

4,344 ; 44,755

1,406 ; 46,161 1,343 ; 47,504

59;47,563

48;47,611

66;66 45 : 111

90;201

36 : 238

13;251

9;260

United States Department of Agriculture

EAGLE CREEK FIRE PROGRESSION September 2nd - September 28th, 2017

Current Fire Severity

Oregon Western Cascades

Future Fire Activity

Study	Geographic Extent	Projected Change from Current	Variable
Stavros et al. 2014	OR,WA, N. CA	+	Large fire occurrence
McKenzie et al. 2004	OR,WA, N. CA	+	Area burned
Littell et al. 2010	WA	+ 200 to 300%	Area burned
Turner et al. 2015	Willamette Valley – OR	+300 to 900%	Area burned
Krawchuck et al. 2009	Global	+	Fire probability
Fried et al. 2004	N. CA	-8%	Area burned
Barr et al. 2010	Klamath Basin - OR and N. CA	+11 to 22%	Area burned
Liu et al. 2012	continental US	no	Fire potential ²
Westerling et al. 2011	N. CA	+100%	Area burned
Rogers et al. 2011	OR, WA	+76 to 310%/ +29 to 40%	Area burned/ Severity
Sheehan et al. 2015	OR, WA	-82% to 14%	Mean Fire Interval

Mote et al. 2014

Things To Consider

- Patch Size
- Seasonality
- Productivity
- Post-fire climate
- Invasive species
- State changes

Pre-fire Management Options

Pre-fire management options	Low Severity Regimes	Mixed Severity Regimes	High Severity Regimes
Basic stand-level fuel reduction (thinning, surface fuels, ladder fuels)	✓	?	×
Promote species and structural diversity within and across stands, include hardwoods	\checkmark	\checkmark	?
Reduce other ecosystem stressors (invasives, fragmentation)	\checkmark	\checkmark	✓
Limit human ignitions	\checkmark	\checkmark	✓
Aggressive wildfire detection	\checkmark	\checkmark	✓
Develop post-fire response strategies	\checkmark	\checkmark	✓

Post-fire Management Options

Pre-fire management options	Low Severity Regimes	Mixed Severity Regimes	High Severity Regimes
Assess fire impacts relative to management objectives (can be + or -)	\checkmark	\checkmark	✓
Leverage natural regeneration - inexpensive, diverse, can't replant everywhere	\checkmark	\checkmark	✓
Planting: promote species and structural diversity within and across stands, consider hardwoods	\checkmark	\checkmark	~
Coordinate post-fire activities with adjacent landowners	\checkmark	\checkmark	\checkmark
Use events as learning opportunities (research, monitoring, trials, adaptive mgt.)	\checkmark	\checkmark	\checkmark

Questions?

